Question		Answer	Marks	Part Marks and Guidance	
1	(a)	[$x=$] 5.5	3	oe; nfww M2 for $2 x=11$ oe or M1 for x s or numbers collected and simplified correctly and M1FT for final answer FT their $a x=b$ or $a x-b=0$ with $a \neq 1$ or 0 or b and $b \neq 0$, provided at least M1 earned SC2 for correct embedded answer	allow from trials
	(b)	$3 n+1$	2	oe; need not be simplified M1 for $3 n$ oe SC1 for $3 x+1$ oe using other letters	accept $n \times 3 . n 3$ etc; [Common with Foundation]

$\mathbf{2}$	(a)	48	1		Common	
	(b)		$4(n+2)$ or $4 n+8$	2	M1 for $4 \times n$ oe soi	Condone poor notation such as $n 4$ etc or $n=4 n+8$ Common

| $\mathbf{3}$ | (a) | $2,6,12$ | 2 | M1 for two correct in the correct
 positions or for 6, 12, 20 or 0, 2, 6 | |
| :--- | :--- | :--- | :--- | :---: | :--- | :--- |
| | (b) | $10-3 n$ oe | 2 | Accept unsimplified
 M1 for $3 n$ or $-3 n$ oe soi
 Or SC1 for $3-10 x$ oe | Condone poor notation such as
 $n 3$ etc or $n=10-3 n$ |

4	(a)	96	2	nfww M1 for $[6 \times] 16$ Or SC1 for answers of -96 or 576		
	(b)	(c)		$3 y(2 y+3)$	2	M1 for two terms in correct place Or SC1 for 3, 7,11
	(d)	$\frac{15}{4}$ oe isw	2	M1 for $3 y(\ldots$.$) or for y(6 y+9)$ or for $3\left(2 y^{2}+3 y\right)$	Condone missing final bracket	

5	(a)	Vert. dist $=449-170$ or 279 Unit conversion before Pythagoras/trig: Either Horiz. dist. $=1.293 \times 1609$ or 2080[.437..] Or Vert. dist. $=$ their $279 \div 1609$ or 0.17[3...] Their $h^{2}+$ their v^{2} [$=4406059$ or 1.7019..] $\sqrt{\text { Their } h^{2} \pm \text { their } v^{2}}$ 2098.6 to 2100	M1 M1 M1 M1 A1	M1 for 279 seen Allow M1 for $449 \div 1609$ or $170 \div 1609$ or clear indication that either 449 [metres] $=0.279$ [...] or 0.28 [miles] or that 170 [metres] $=0.105[\ldots$ [.] or 0.11 [miles] Allow even if units are not consistent Allow even if units are not consistent Square root step may be implied	Alternative method using trig: M1 for vert. dist as opposite M1 for unit conversion as opposite M1 for use of $\tan ^{-1}$ to find an angle (note they could be finding either angle) M1 for correct selection of a length and trig ratio consistent with the angle found A1 for 2098.6 to 2100
	(b)	Use at least two triangles/use interim point	1		See exemplars

$\mathbf{6}$	(a)	$4,7,12$	$\mathbf{2}$	M1 for two correct (condone misplaced)	
	(b)	$5 n-2$ oe	$\mathbf{2}$	Accept unsimplified M1 for $5 n$ soi	Accept $5 \times n, n 5$ etc; condone capitals or different letters used

$\mathbf{7}$	(a)	(i)	$125 \sqrt{2}$ final answer	1		
		(ii)	250	2	M1 for their (a)(i) $\times \sqrt{2}$	
	(b)		$500 \sqrt{2}$	3	M2 for $\frac{1000}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$ or better	
					Or M1 for $\frac{1000}{\sqrt{2}}$ oe	

8	(a)		$4 n+1$ oe	2	Mark final answer M1 for $4 n$ oe Or SC1 for $4 n$th +1	Condone $4 \times n, n 4$, use of other letters instead of n Ignore ' $n=$ ' or ' nth $=$ '
	(b)	(i)	3, 9, 27	2	B1 for two correct, in correct position Or SC1 for 1, 3, 9 or 9, 27, 81	B0 for 3, 6, 9
		(ii)	$\begin{aligned} & 1594323 \text { and } \\ & 13^{\text {th }} \text { term } \end{aligned}$	3	B2 for one of these or 3^{13} as answer Or B1 for 1594323,531441 or 4782969 seen eg as trials	

9	(a)	(i)	0	1		0/2 not sufficient
	$\stackrel{ }{*}$	(ii)	45	1		
	(b)		$4 n-2$ oe	2	Mark final answer M1 for $4 n$ oe SC1 for $4 n$th - 2	Condone $4 \times n, n 4$, use of other letters instead of n, or $4 n+-2$; ignore ' $n=$ ' or ' nth $=$

$\left.\begin{array}{|l|l|l|l|c|l|l|}\hline 11 & \text { (a) } & \text { 9 } & 2 & \begin{array}{l}\text { M1 for sensible strategy such as 40, } \\ 80,160 \text { etc seen (must be at least } 3 \\ \text { terms of correct / FT correct doubling, } \\ \text { condoning only one error) }\end{array} & \begin{array}{l}\text { Or similarly working backwards } \\ \text { from 1280: 640, 320, 160 etc } \\ \text { NB working may be by given }\end{array} \\ \text { terms of sequence }\end{array}\right]$

12	(a)		$4,10,16$	$\mathbf{2}$	B1 for two of these correct and in the correct position or associated in working with correct value of $n ;$ or B1 for $-2,4,10$	
	(b)		no, following work gaining both M marks	$\mathbf{3}$	M1 for $n^{2}=200$ soi and M1 for $\sqrt{200}$ or $10 \sqrt{2}$ is not an integer, or $\sqrt{200}=14.1 \ldots$	e.g. M2 for '200 is not a square number'

